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I would like to speak about the estimation of a parameter θ if a second parameter η is a nuisance
parameter changing from observation to observation.

The starting point is a paper by Pfanzagl which will appear in the Annals of Statistics. In this paper
Pfanzagl considers bounds for the asymptotic risk of estimators which are valid under mixtures of
probability measures. The question is discussed whether those bounds remain valid if individual
sequences of nuisance parameters are considered.

Let us begin with some notation.

(X,A) denotes a sample space and (Pθ,η : θ ∈ Θ, η ∈ H) is a family of probability measures on
A. θ is the parameter to be estimated and η is the nuisance parameter.

Let Γ|B(H) be a prior distribution for the nuisance parameter. We denote the mixtures by

Qθ,Γ(A×B) =

∫
B

Pθ,η(A) Γ(dη), A ∈ A, B ∈ B(H),

and marginals of the mixtures by
Q′

θ,Γ = Qθ,Γ|A.

The paper by Pfanzagl contains two main results. The first result deals with the asymptotic be-
haviour of estimators under individual sequences of random nuisance parameters, and the second
result is a counterexample.

Let me give you an impression of the first result by Pfanzagl. It deals with asymptotic linear
estimator sequences.

Let K(x, θ) be a kernel satisfying∫
K(., θ) dQθ,Γ = 0,

∫
K(., θ)2 dQθ,Γ =: σ2

1(θ) < ∞.

An estimator sequence (Tn) is asymptotically linear with influence function K if

√
n(Tn − θ)− 1√

n

n∑
i=1

K(xi, θ) → 0

{
(Q′n

θ,Γ) (∗)
Q′N

θ,Γ − a.e. (∗∗)
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There are two versions of this property depending on the type of convergence of the residual term.

What is clear is the following assertion: The distributions

L
(√

n(Tn − θ)
∣∣∣(Q′n

θ,Γ)
)
→ ν0,σ2

1(θ)
weakly

of the estimator sequence converge weekly to a certain normal distribution.

Now, let (Yi) be a sequence of random nuisance parameters which is i.i.d. according to Γ. The
question arises what happens with the distributions

L
(√

n(Tn − θ)
∣∣∣ n⊗

i=1

Pθ,Yi

)
?

An answer is given by the result of Pfanzagl. Roughly speaking, the assertion is as follows:

0.1 THEOREM. (Pfanzagl, 1992) Let

µn(θ) :=
1√
n

n∑
i=1

∫
K(., θ) dPθ,Yi

, σ2
2(θ) :=

∫
[Eθ,η(K(., θ)))]2Γ(dη).

Then, if (Tn) satisfies (∗∗),

L
(√

n(Tn − θ)
∣∣∣ n⊗

i=1

Pθ,Yi

)
∼ νµn(θ),σ2

1(θ)−σ2
2(θ)

The tilde can be made precise in many ways. One possibility is that the difference between the
distribution functions converges to zero ΓN-a.e.

The message is that the asymptotic variance of (Tn) is strictly smaller than σ2
1 but there are random

fluctuations of the mean. Pfanzagl’s result is valid for an abstract space of nuisance parameters
η ∈ H .

I would like to show you an approach to Pfanzagl’s theorem which is very different from Pfanzagl’s
own method. My approach has advantages and disadvantages.

Its main advantage is that the whole problem can be embedded into the usual framework of the local
asymptotic theory of statistics. Thus, as we will see later, the machinery of obtaining asymptotic
risk bounds can be applied.

The disadvantage is that at least so far the method I’m going to present can only be applied to
one-dimensional nuisance parameters which a continuous distribution function. You will see soon,
why.

Thus, my approach is not able to replace Pfanzagls’s proofs which can be applied to more general
situations. But it shows some light into the deeper structure of the problem.

Let us indicate what we want to find.

Given the probability measures ⊗n
i=1Pθ+s/

√
n,ηi for an individual sequence (ηi) of nuisance param-

eters we would like to have probability measures ⊗n
i=1Rn,i, say, such that the likelhood ratios

d
⊗n

i=1 Pθ+s/
√
n,ηi

d
⊗n

i=1 Rn,i
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can be expanded in some sense, for example leading to some LAN-property.

If we take in the denominator a product of i.i.d. components then an LAN-property could be proved
but for a class of sequences (ηi) which is too small to cover cases of random nuisance parameters.
In order to cover the case of random nuisance parameters we have to choose that the denominator
more subtle.

The main idea is as follows.

Let (ηi) be a sequence of nuisance parameters. We assume that the nuisance parameters take their
values in the unit interval ηi ∈ [0, 1] and that they are uniformly distributed. The case of random
nuisance parameters with a continuous distribution function can be reduced to that case.

Let ηn:1, ηn:2, . . . , ηn:n be the order statistics of η1, η2, . . . , ηn. These order statistics can be decom-
posed in the following way:

ηn:i =
i

n+ 1
+

1√
n

(√
n
(
ηn:i −

i

n+ 1

))
.

We center the order statistics at their expectation and rescale the residuals by
√
n. For notational

convenience let us write
ηn:i = τni +

1√
n
tni.

This decomposition is applied in the following way.

Let (Tn) be a sequence of permutation invariant estimators. Then we may write its distribution as

L
(√

n(Tn − θ)
∣∣∣ n⊗

i=1

Pθ+s/
√
n,ηi

)
= L

(√
n(Tn − θ)

∣∣∣ n⊗
i=1

Pθ+s/
√
n,ηn:i

)
= L

(√
n(Tn − θ)

∣∣∣ n⊗
i=1

Pθ+s/
√
n,τni+tni/

√
n

)
What we need is an LAN-property for the likelihood ratios

d

n⊗
i=1

Pθ+s/
√
n,τni+tni/

√
n

d

n⊗
i=1

Pθ,τni

Such an LAN-property can in fact be obtained, at least for triangular arrays (tni) satisfying a certain
compactness condition. We will see later that in case of random nuisance parameters the arrays
satisfy this compactness condition with large probability.

Let (tni) be an arbitrary triangular area and define step functions

tn(η) :=
n∑

i=1

tni1((i−1)/n,i/n].
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We define

0.2 DEFINITION. The array (tni) is relatively compact if the sequence of step functions (tn) is
relatively compact in L2([0, 1]).

In order to state the LAN-property we need additional notations.

Let Pθ,η ≪ µ and dPθ,η/dµ =: p(x, θ, η). Then we denote

ℓ(1)(x, θ, η) =
∂

∂θ
log p(x, θ, η), ℓ(2)(x, θ, η) =

∂

∂η
log p(x, θ, η)

and
gθ(x, η, s, t) := s · ℓ(1)(x, θ, η) + t · ℓ(2)(x, θ, η).

Of course, we suppose the validity of some regularity conditions which are not specified in detail.

Now, we are in the position to state the LAN-property.

0.3 THEOREM. Let (tni) be relatively compact. Then

d
n⊗

i=1

Pθ+s/
√
n,τni+tni/

√
n

d
n⊗

i=1

Pθ,τni

= exp
( 1√

n

n∑
i=1

gθ(xi, τni, s, tni)−
1

2

∫ ∫
g2θ(x, y, s, tn(η)) dPθ,η(x, y) dη + rn(x, θ, s, tn)

)
where

sup
|s|≤a

|rn(., θ, s, tn)| → 0
( n⊗

i=1

Pθ,τni

)

Now, let us show how to apply the LAN-property to the asymptotic behaviour of estimator se-
quences.

Let (Tn) be a permutation invariant estimator sequence being asymptotically linear with residuals
satisfying (∗). We do not require the stronger condition (∗∗) used by Pfanzagl, but we have to
assume that (Tn) consists of permutation invariant estimators. The reason is that for permutation
invariant functions (rn) the LAN property implies

rn → 0 (Q′n
θ,λ) ⇒ (rn) → 0

( n⊗
i=1

Pθ,τni

)
.

(the measures are contiguous on the permutation invariant sigma fields).

From asymptotic linearity it follows that

L
(√

n(Tn − θ)
∣∣∣ n⊗

i=1

Pθ,τni

)
→ ν0,σ2

1(θ)−σ2
2(θ)

The asymptotic variance term is the same as in Pfanzagl’s theorem.
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And now we apply the LAN-property together with LeCam’s third lemma and obtain

0.4 THEOREM. Let (tni be relatively compact. Then

L
(√

n(Tn − θ)
∣∣∣ n⊗

i=1

Pθ+s/
√
n,τni+tni/

√
n

)
→ νµn(θ),σ2

1(θ)−σ2
2(θ)

where
µn(θ) = s

∫
(J1(θ, η) dη +

∫
tn(η)J2(θ, η) dη

with
Ji(θ, η) =

∫
(K(., θ)ℓ(i)(., θ, η) dPθ,η, i = 1, 2,

being the inner products between the influence function of (Tn) and the partial derivatives of the
log likelihood functions.

This is the version of Pfanzagl’s theorem stated for deterministic arrays of nuisance parameters. Of
course, such a result is of particular interest if it is possible to obtain the case of stochastic nuisance
parameters as a special case.

Let us show how to do this.

Let (Yi) be a sequence of random nuisance parameters and note by (Fn) the empirical distribution
functions. Assume that the standardised empirically processes

√
n(Fn(η)− η)

converge weakly to the Brownian Bridge (Xη) with paths in D([0, 1]). (E.g.: Let let (Yi) be i.i.d
and uniformly distributed.)

The order statistics (Yn:i) can be decomposed as

Yn:i =
i

n+ 1
+

1√
n

(√
n
(
Yn:i −

i

n+ 1

))
︸ ︷︷ ︸

tni

,

and what we have to do is to check whether the arrays (tni) are relatively compact.

For this, we consider the step functions

tn(η) =
n∑

i=1

tni1((i−1)/n,i/n](η)

=
n∑

i=1

(√
n
(
Yn:i −

i

n+ 1

))
1((i−1)/n,i/n](η)

=
√
n
(
Yn:[nη]+1 −

[nη] + 1

n+ 1

)
and observe that these are not nothing else than the quantile processes of (Yi). It is known that
the quantile processes converge weakly to a Brownian Bridge (Xη) in D([0, 1]) and therefore are
concentrated on compact sets with high probability.
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Thus, we obtain the following result for random nuisance parameters.

0.5 THEOREM. Let (Tn) be a sequence of permutation invariant estimatros satisfying the asymp-
totic linearity condition. Suppose the (Yi) is a sequence of random nuisance parameters who’s
quantile processes converge weekly to a Browning Bridge (Xη). Then for every bounded loss
function W the distribution of∫

W
(√

n(Tn − θ)
)
d

n⊗
i=1

Pθ+s/
√
n,Yi

converge weakly to the distributions of∫
W

(
x+ s

∫
J1(θ, η) dη −

∫
XηJ2(θ, η), dη

)
ν0,σ2

1(θ)−σ2
2(θ)

(dx).

This is nothing else then another version of Pfanzagl’s theorem. It states that for individual se-
quences of stochastic nuisance parameters the asymptotic variance is smaller than for mixtures of
probability measures but the distributions of the estimators are centerd around random fluctuations.

The second topic of Pfanzagl’s paper is concerned with asymptotic bounds for the risk of estima-
tors.

The following is well known.

Consider the families of probability measures which are called the full mixture model(
Qθ+s/

√
n,(1+k/

√
n)λ : s ∈ R, k ∈ L2([0, 1])

)
.

Then there exists an influence function K̂(., θ) (which is called the canonical gradient for the
estimation of θ) such that under the mixture model the estimator sequence (Tn) with influence
function K̂ is minimax in the Hajek-LeCam sense.

Let us state result on the minimax bound as an admissibility assertion. For this we have to restrict
ourselves to the case θ ∈ R.

0.6 THEOREM. Let (Tn) be an estimator sequence which satisfies the asymptotic linearity condi-
tion with the optimal influence function K̂:

√
n(Tn − θ)− 1√

n

n∑
i=1

K̂(xi, θ) → 0 (Q′n
θ,λ)

Let W be a loss function satisfying the usual conditions and let

βW :=

∫
W (x) ν0,σ2

1(θ)
(dx).

Then the following assertions are valid:

(1) If an estimator sequence (Sn) is not worse than βW , i.e.

lim sup
n→∞

∫
W (

√
n(Sn − θ)− s) dQ′n

θ+s/
√
n,(1+k/

√
n)λ ≤ βW for all s, k,
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then (Sn) is not better than βW , i.e.

lim inf
n→∞

∫
W (

√
n(Sn − θ)− s) dQ′n

θ+s/
√
n,(1+k/

√
n)λ ≥ βW for all s, k.

(2) The sequence (Tn) attains the bound βW :

lim
n→∞

∫
W (

√
n(Tn − θ)− s) dQ′n

θ+s/
√
n,(1+k/

√
n)λ = βW for all s, k.

This is well known.

In his paper Pfanzagl considers the problem whether the bound βW remains valid if we consider
individual sequences of stochastic nuisance parameters.

At first sight things look promising.

Let (Tn) be an estimator sequence which satisfies the asymptotic linearity condition with the in-
fluence function K̂ which is optimal for the full mixture model. Then it follows from Pfanzagl’s
theorem that

lim
n→∞

∫
W (

√
n(Tn − θ)− s) d

n⊗
i=1

P n
θ+s/

√
n,Yi

= βW (λn).

The reason is that for the full mixture model the optimal influence function K̂ is not correlated
with ℓ(2)(., θ, η). Hence the term σ2

2(θ) is zero and the stochastic fluctuation of the mean does not
exist.

But, although the bound for the mixture model is attained even for individual sequences of nuisance
parameters, a counter example by Pfanzagl shows that the bound βW is not a strict bound for the
risks if individual sequences of nuisance parameters are considered.

The counter example by Pfanzagl is as follows.

There exists a sequence of estimators (Tn) which satisfies the asymptotic linearity condition with
K̂ and hence satisfies

lim
n→∞

∫
W (

√
n(Tn − θ)− s) d

n⊗
i=1

P n
θ+s/

√
n,Yi

= βW λN − a.e..

but

lim
n→∞

∫
W (

√
n(Tn − θ)− s) d

n⊗
i=1

P n
θ+s/

√
n,ηi

< βW

for countably many individual sequences (ηi) of nuisance parameters. The sequence (ηi) can even
be chosen such that the empirical distribution functions converge to the distribution function of λ.

In view of this counter example only the hope remains to show that the set of sequences (ηi) where
such a superefficiency can happen is small in some sense. I would like to show that this is indeed
the case.

The basic result is that the LAN-property for individual sequences can be stated if the probability
measures are restricted to the symmetric sigma fields.
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For any function f : X ×Θ× [0, 1] → R we abbreviate

f̄(x, θ) := EQθ,λ
(f(., θ, .)|A) =

∫
f(x, θ, η)p(x, θ, η) dη∫

p(x, θ, η) dη
.

Let
ḡθ(x, s, tn) = s · ℓ̄(1)(x, θ) + (tn · ℓ(2))(x, θ)

where tn ∈ L2([0, 1]). Moreover, let Bn ⊆ An be the sub-sigma field of permutation invariant sets.
Then we have the following theorem.

0.7 THEOREM. Let (tni) be relatively compact. Then

d
n⊗

i=1

Pθ+s/
√
n,τni+tni/

√
n

∣∣∣Bn

d

n⊗
i=1

Pθ,τni

∣∣∣Bn

= exp
( 1√

n

n∑
i=1

ḡθ(xi, s, tn)−
1

2

∫
ḡ2θ(., s, tn) dQθ,λ + rn(x, θ, s, tn)

)
where

sup
|s|≤a

|rn(., θ, s, tn)| → 0
( n⊗

i=1

Pθ,τni

)

This result gives us the possibility to apply the results of the local asymptotic decision theory to
permutation invariant estimators.

In general, we obtain canonical gradients for the estimation of θ which are different from the
gradients obtained in the full mixture model. But we obtain the same canonical gradients if we are
dealing with models of a special structure.

Let us assume that
p(x, θ, η) = q(x, θ)p0(T (x), θ, η),

where T is sufficient for η and (Pθ,η : η ∈ H) is complete for T . This structure is valid for example
for the case considered in the famous paper by Neyman and Scott. In such a case the canonical
gradients for the estimation of θ coincide for the full mixture model and the symmetric model with
individual nuisance parameters.

Thus, we arrive at the following assertion.

0.8 THEOREM. Let Sn be a permutation invariant estimator sequence. If for all relatively compact
arrays (tni) and every s

lim sup
n→∞

∫
W (

√
n(Sn − θ)− s) d

⊗
Pθ+s/

√
n,τni+ni/

√
n ≤ βW

then equality holds, that is

lim inf
n→∞

∫
W (

√
n(Sn − θ)− s) d

⊗
Pθ+s/

√
n,τni+ni/

√
n ≥ βW
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for all relatively compact arrays (tni) and all s.

Now, what is the relation of this assertion to Pfanzagl@s counter example ?

The point is that Pfanzagl’s exceptional sequences (ηi) do not give rise to relatively compact arrays
(tni). But we know that for i.i.d. random nuisance parameters the arrays (tni) are a relatively
compact with great probability.

This gives the following final result.

0.9 THEOREM. Let (Yi) be a sequence of random nuisance parameters such that the empirical
processes

√
n(Fn(η − η) converge to a Brownian Bridge. Let (Sn) be a permutation invariant

estimator sequence.

If for all s and all ϵ > 0

P
(∫

W (
√
n(Tn − θ)− s) d

n⊗
i=1

P n
θ+s/

√
n,Yi

≥ βW + ϵ
)
→ 0

then for all s and all ϵ > 0

P
(∫

W (
√
n(Tn − θ)− s) d

n⊗
i=1

P n
θ+s/

√
n,Yi

≤ βW − ϵ
)
→ 0

This assertion shows that superefficiency is seldom but it does not exclude counter examples of
Pfanzahl’s type.

To finish, I would like to stress that the connection between random nuisance parameters and trian-
gular arrys can only be treated in the way I did, if the random nuisance parameter is of dimension
one. I’m afraid that the idea can not be extended to greater dimension.


